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Abstract

Flexural vibration in a pipe system conveying fluid is studied. The pipe is designed using the idea of the phononic

crystals. Using the transfer matrix method, the complex band structure of the flexural wave is calculated to investigate the

gap frequency range and the vibration reduction in band gap. Gaps with Bragg scattering mechanism and locally resonant

mechanism can exist in a piping system with fluid loading. The effects of various parameters on the gaps are considered.

The existence of flexural vibration gaps in a periodic pipe with fluid loading lends new insight into the vibration control of

pipe system.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Elastic wave propagation in periodic structures has been researched for years [1–3]. The vibration response
of periodic structures has been applied primarily to pass band and stop band analysis. But most of this work
dealt with one-dimensional (1D) structures.

In the last decade, the propagation of elastic or acoustic waves in periodic composite materials called
phononic crystals (PCs) has received considerable attention [4–13]. The emphasis of these studies was laid on
the existence of complete elastic band gaps within which both sound and vibration are forbidden. This is of
interest for applications such as frequency filters, vibrationless environments for high-precision mechanical
systems, and transducer design.

There are two kinds of gap formation mechanism for PCs, Bragg scattering mechanism [4–6] and locally
resonant (LR) mechanism [7–9].

The studies have shown that the existence of the Bragg gaps is strongly connected with a large acoustic
impedance ratio between the scatterers’ and the matrix’ material [9]. The center frequencies are always given
by Bragg’s condition f ¼ nðv=2aÞ (n ¼ 1, 2, 3, y), where v is the elastic velocity of the matrix material and a is
the lattice constant [9]. For PCs with gaps induced by the Bragg scattering mechanism, the spatial modulation
of the elasticity must be of the same order as the wavelength in the gap. Thus, it is not practical for shielding
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acoustic sound, because the structure would have to be the size of outdoor sculptures in order to shield
environmental noises [7].

The pioneering work of Liu et al. [7] has opened additional field of PCs. The authors studied three-
dimensional (3D) PCs consisting of cubic arrays of coated lead spheres (the coating is a thin film of a soft
material) immersed in an epoxy matrix, i.e., LR PCs. The frequency of a LR gap is dictated by the frequency
of the resonance, and is independent of orderness, periodicity, and symmetry unless there is a high
concentration of resonating units so that they couple strongly with each other [10]. The LR gaps can exist in a
frequency range of two orders of magnitude lower than the one resulting from the Bragg scattering.

The conventional gaps in the periodic structures can be attributed to the Bragg mechanism using PCs
theory. Similarly we can introduce the LR gaps into the periodic structures. Also by using the PCs calculation
method, the vibration propagation property of two-dimensional (2D) and 3D periodic structures can be dealt
with conveniently. Vibration band gaps in PCs have been found experimentally and theoretically [11–13].

Vibration analysis of piping systems conveying fluid has received considerable attention due to its wide
application to areas such as the designing of heat exchanger tubes, main steam pipes, and hot/cold leg pipes in
nuclear steam supply systems, oil pipelines, pump discharge lines, marine risers, and others [14]. Vibration
analysis of pipe systems is something that has been studied early on [14–17].

There are many vibration modes existing in pipe system that convey fluid, such as longitudinal vibration,
torsional vibration, flexural vibration, and their coupled vibrational modes. As a typical and important
vibration mode, flexural vibration was studied early on. In Ref. [15], the free flexural wave propagation in the
periodically supported, infinite piping system conveying fluid was studied. They designed a pipe with periodic
supports to reduce the vibration. Flexural vibration gaps formed with the Bragg scattering mechanism can
exist in the pipe with periodic supports. To our knowledge, no work appears in the open literature studying
Bragg band gaps in periodic pipe walls or LR gaps in the pipe.

In this paper, we investigate the flexural vibration band gaps in the periodic pipe system conveying fluid.
Both the Bragg scattering mechanism and the LR mechanism are introduced into the pipe system conveying
fluid. The band structure for infinite periodic cells is calculated by the transfer matrix (TM) method. The
results show that vibration band gaps can control vibration propagation through the pipe system conveying
fluid. Using the idea of PCs, the existing band gaps will provide a new way to reduce the vibration of pipe-
conveying fluid.

2. Models and transfer matrix method

2.1. Equations of motion

For the Euler-type pipe conveying fluid at a constant velocity v, if gravitational forces, internal damping,
externally imposed tension, and pressurization effects are neglected, the well-known governing equation of
flexural vibration becomes [16,17]

EI
q4w
qx4
þmf v2

q2w
qx2
þ 2mf v

q2w
qxqt
þ ðmf þmpÞ

q2w
qt2
¼ 0, (1)

where w is the flexural displacement, E is Young’s modulus of the pipe wall material, I is the area moment of
inertia with respect to the axis perpendicular to the pipe axis, EI is the flexural rigidity of the pipe, mf and mp

are fluid and pipe masses per unit length, respectively, and v and t are the constant uniform fluid velocity and
time, respectively.

For a harmonic traveling wave wðx; tÞ ¼W eiðot�kxÞ, one can find the dispersion relation of Eq. (1):

EIk4
�mf v2k2

þ 2mf vok � ðmf þmpÞo2 ¼ 0. (2)

For a given o, the wavenumber roots of Eq. (2) include two different real roots and a conjugate pair of
complex roots, designated [16] kd ;�ku; kR � ikI . The positive and negative real wavenumbers describe the
propagating waves in positive and negative directions. And the conjugate root pair describes the near-field
waves (non-propagating, spatially decaying). Also, the wavenumbers depend on the frequency o and flow
speed v [17].
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The harmonic solution of Eq. (1) is

wðx; tÞ ¼ eiotðW 1 e
�ik1x þW 2 e

�ik2x þW 3 e
�ik3x þW 4 e

�ik4xÞ, (3)

where the wavenumber ki (i ¼ 1, 2, 3, 4) is given by k1 ¼ kd, k2 ¼ �ku, k3 ¼ kR+ikI, k4 ¼ kR�ikI.
For the Euler pipe without fluid loading, the pipe can be treated as Euler beam. The equation of motion is

given as

EI
q4w
qx4
þmp

q2w
qt2
¼ 0. (4)

And the harmonic solution of Eq. (2) for the pipe without fluid loading is

wðx; tÞ ¼ eiotðaþ e�ikx þ aþN e�kx þ a� eikx þ a�N eikxÞ, (5)

where the subscript N denotes the near-field wave component. The wavenumber k is given by

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mpo2=EI

4

q
. (6)

2.2. Model and TM for Bragg mechanism

Fig. 1 shows a periodic binary composite pipe system. The system consists of an infinite repetition of
alternating pipe A with length a1 and pipe B with length a2. Thus, the PCs pipe’s lattice constant is a ¼ a1+a2.
Pipe A and pipe B are made up of different materials, A and B, respectively.

For pipe with fluid loading, the continuities of displacement, slope, bending moment and shear force at the
interfaces between cell n�1 and n, i.e. x ¼ na give:

wn;Að0Þ ¼ wn�1;BðaÞ, (7a)

w0n;Að0Þ ¼ w0n�1;BðaÞ, (7b)

EAIAw00n;Að0Þ ¼ EBIBw00n�1;BðaÞ, (7c)

EAIAw000n;Að0Þ ¼ EBIBw000n�1;BðaÞ. (7d)

One can obtain the matrix form of Eqs. (7)

KWn;A ¼ HWn�1;B, (8)

where W ¼ ½W 1;W 2;W 3;W 4�
T.

The continuities at the interfaces between pipes A and B in cell n, i.e. x ¼ na+a1, give:

wn;Aða1Þ ¼ wn;Bða1Þ, (9a)

w0n;Aða1Þ ¼ w0n;Bða1Þ, (9b)

EAIAw00n;Aða1Þ ¼ EBIBw00n;Bða1Þ, (9c)

EAIAw000n;Aða1Þ ¼ EBIBw000n;Bða1Þ. (9d)
A B

a1 a2

(n-1) cell n cell

Fig. 1. The sketch map of periodic binary pipe.
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The matrix form of Eq. (9) can be written as

K1Wn;A ¼ H1Wn;B. (10)

Based on Eqs. (8) and (10), the relation between the nth cell and (n�1)th cell is given

Wn;B ¼ TWn�1;B, (11)

where T ¼ H�11 K1K
�1H is the TM.

Due to the periodicity of the infinite structure in the x direction, the vector Wn must satisfy the Bloch
theorem [18]

Wn ¼ eiqaWn�1, (12)

where q is the wave vector in the x direction. For convenience, we write all the one-dimension vectors as scalar
form in this paper.

It follows that the eigenvalues of the infinite periodic pipe structures with fluid loading are the roots of the
determinant

T� eiqaI
�� �� ¼ 0, (13)

where I is the 4� 4 unit matrix. For given o, Eq. (13) gives the values of q. Depending on whether q is real or
has an imaginary part, the corresponding wave propagates through the beam (pass band) or is damped
(band gap).

Similarly, one can get the eigenvalues of the infinite periodic pipe structures without fluid loading basing
on Eq. (4).

2.3. Model and TM for LR mechanism

Fig. 2 shows a simple model of a pipe with periodical LR structures. The pipe is attached periodically with
harmonic oscillators. The LR oscillator consists of the spring k and mass m. The lattice constant is a.

As for the nth LR oscillator, considering the equilibrium condition for all the forces in the y-axis, including
the inertial force, one obtains [19,20]

f nðtÞ �m
q2ZnðtÞ

qt2
¼ 0, (14)

where fn(t) is the interactive forces between the LR oscillator and the pipe at the attaching point xn. ZnðtÞ ¼

Vn expðiotÞ is the displacement of the nth LR oscillator at the center of gravity. The absolute value of Vn is the
amplitude of the vibration of the nth LR oscillator.
k

m

(n-1)a (n+1)a

Zn(t)

w(xn,t)

n-1 cell n cell
x

y

O
k

m

fn(t)

xn

Zn(t)

na

(a)

(b)

Fig. 2. (a) The sample model of the pipe with LR structures and (b) the fore equilibrium of the nth LR structure.
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The force fn(t) is given by

f nðtÞ ¼ k½wðxn; tÞ � ZnðtÞ�

¼ k½wnð0Þ � V n� expðiotÞ

9Fn expðiotÞ, (15)

Substituting Eqs. (15) into Eq. (14) leads to

V n ¼
k

k �mo2
wnð0Þ. (16)

These results are now used to address the dispersive relation of the pipe with LR structures. As mentioned in
last section, there are two interfaces in one cell for the Bragg system. For the LR structures, however, there is
only one interface for the one wall materials in one cell, i.e. the attachment point xn ¼ na. The continuities of
displacement, slope, bending moment, and shear force at this interface give:

wnð0Þ ¼ wn�1ðaÞ, (17a)

w0nð0Þ ¼ w0n�1ðaÞ, (17b)

EIw00nð0Þ ¼ EIw00n�1ðaÞ, (17c)

EIw000n ð0Þ � F n ¼ EIw000n�1ðaÞ. (17d)

Substituting Eqs. (3) and (16) into Eq. (17), one can obtain the transfer relation between cell n�1 and cell n,

Wn ¼ T̂ Wn�1. (18)

Similar to Eq. (12) in Bragg case, the standard eigenvalue problem for the pipe with LR structures can be
given as follows:

jT̂� eiqaIj ¼ 0. (19)
3. Results and discussion

3.1. Bragg gap properties

The periodic pipe with different wall material parameters is illustrated in Fig. 1(a). As an example, we
calculated the band structure with epoxy as material A and aluminum as material B. The fluid in the pipe is
water. The elastic parameters employed in the calculations were rA ¼ 1180 kg/m3, EA ¼ 4.35� 109 Pa for
epoxy, rB ¼ 2730 kg/m3, EB ¼ 7.756� 1010 Pa for aluminum, and rw ¼ 1000 kg/m3 for water. The inner and
outer radii of the pipe are chosen as ri ¼ 0.09m and ro ¼ 0.1m.

For PCs with gaps induced by the Bragg scattering mechanism, the spatial modulation of the elasticity must
be of the same order as the wavelength in the gap. So we must choose large lattice constant to get a low-
frequency gap. Here, the lattice constant is chosen to be a ¼ 2m, and a1 ¼ a2 ¼ 1m. The flow speed is
v ¼ 50m/s.

Fig. 3 illustrates the complex band structure calculated with Eq. (13) for the Bragg system. The real wave
vector is illustrated in Fig. 3(a), and the absolute value of the imaginary part of the complex wave vector is
illustrated in Fig. 3(b). The shadowed region in Fig. 3(a) indicates the complete band gap between 27–45,
123–201, and 335–411Hz. As for the two different real wavenumbers, k1 and k2, there are two branches for a
given frequency o as shown in Fig. 3(a).

Within the gap ranges, wave vectors k1 and k2 have the imaginary components [21]. They are illustrated as
continuous lines in Fig. 3(b), which can be used to describe the attenuation properties in the band gaps. From
Fig. 3(b), one can see that there is an imaginary wave vector (dashed line) within the frequency range of the
pass band. This is due to the near-field wave component k3 and k4. The values of k3 and k4 have imaginary
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Fig. 3. The complex band structure of the periodic material pipe with fluid loading. The material of pipe A, pipe B and fluid are epoxy,

aluminum and water, respectively. The lattice constant a ¼ 2m, internal fluid velocity v ¼ 50m/s: (a) real wave vector and (b) the absolute

value of the imaginary part of the complex wave vector. The continuous lines describes the wave vectors k1, k2 and dashed line describe the

wave vectors k3 and k4, respectively.
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Fig. 4. The complex band structure of the periodic material pipe without fluid loading. The lattice constant a ¼ 2m: (a) real wave vector

and (b) the absolute value of the imaginary part of complex wave vector. The continuous lines describe the wave vectors k1, k2 and dashed

line describe the wave vectors k3 and k4, respectively.
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parts for all frequencies. And the imaginary part of the complex band structure in Bragg system is symmetric
about the center frequency of the gap.

For comparison, we also calculate the complex band structure of the pipe without fluid loading as illustrated
in Fig. 4. The material and geometric parameters remain the same as those in Fig. 3. The first two gap ranges
are 50–76 and 228–395Hz. Comparing Fig. 3 with Fig. 4, one finds that the effect of fluid loading is to make
the gap frequency lower.

For different internal fluid velocities v, the wavenumbers will change [17]. Thus, we should consider the
effect of the internal fluid velocity v on the band gaps. In Fig. 5, the band structure of the pipe with fluid
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Fig. 5. The band structure of with different internal fluid velocity: (a) v ¼ 10m/s and (b) v ¼ 100m/s.

Fig. 6. The sketch of the piping system with LR structure.
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loading for velocity v ¼ 10 and 100m/s is shown. For v ¼ 10m/s, the first three gap ranges are 25–44, 122–201
and 334–411Hz, and for v ¼ 100m/s, the gap ranges are 33–47, 127–202 and 338–415Hz. We find that the gap
frequencies become higher in some sort with faster velocity v. The shape of band structure, however, changes
visibly due to the difference between real wavenumber k1, k2 change greater with a faster velocity v.

3.2. LR gap properties

A pipe with periodic LR structures is shown in Fig. 6. The pipe is constructed from aluminum, whose
material parameters are the same as those in Section 3.1. The inner and outer radii of the pipe are chosen as
r0 ¼ 0.09m, r1 ¼ 0.1m, respectively. The LR structure is composed of a soft rubber ring and a copper ring.
Their outer radii are r2 ¼ 0.15m and r3 ¼ 0.195m, respectively. The length of the two rings is l ¼ 2� 10�2m.
The area moment of inertia I ¼ 2.7� 10�5m4.

For the LR mechanism, we can obtain the low-frequency gap with a smaller lattice constant. Here the lattice
constant is chosen as a ¼ 7.5� 10�2m.

For the rubber ring, the radial stiffness can be calculated as follow [20]:

k ¼
pð5þ 3:29H2ÞGrubberl

lnðr2=r1Þ
(20)

where H ¼ l=ððr1 þ r2Þ lnðr1=r2ÞÞ is shape coefficient.
In the calculation, the material parameters are chosen as rrubber ¼ 1300 kgm�3, Grubber ¼ 4� 106 Pa,

rCu ¼ 8950 kgm�3. And the spring stiffness of the rubber ring can be calculated as k ¼ 3.18� 106N/m basing
on Eq. (20).
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Fig. 7. Complex band structure of the pipe-conveying fluid with infinite LR structures, the lattice constant a ¼ 7.5� 10�2m: (a) real wave

vector and (b) the absolute value of the imaginary part of complex wave vector. The continuous lines describe the wave vectors k1, k2 and

dashed line describe the wave vectors k3 and k4, respectively.

-1 -0.5 0 0.5 1
0

50

100

150

200

fre
qu

en
cy

 (H
z)

0 0.5 1 1.5 2
0

50

100

150

200

fre
qu

en
cy

 (H
z)

|Im (q)| (X �/a)real wave vector q (X �/a)

Fig. 8. Complex band structure of the pipe without fluid loading with infinite LR structures, the lattice constant a ¼ 7.5� 10�2m: (a) real

wave vector and (b) the absolute value of the imaginary part of complex wave vector. The continuous lines describe the wave vectors k1, k2
and dashed line describe the wave vectors k3 and k4, respectively.
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Fig. 7 illustrates the complex band structure calculated with Eq. (19) for the pipe with LR structures. We
observe one complete band gap extending from a frequency of 95Hz up to 108Hz. One can see that the curve
shown in Fig. 7(b) has an asymmetric peak. The attenuation is the strongest at the low-frequency end of the
gap and it become weaker with increasing frequency. This is a typical characteristic of the Fano-like
interference phenomena in PCs with LR structures [8].
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The LR gap in the pipe without fluid loading is illustrated in Fig. 8. The gap range is 95–125Hz. Comparing
Fig. 7 with Fig. 8, one can see that the start frequencies of the LR gap are the same. This is because the start
frequency of the LR gap is due to the resonant of the oscillator at 1=2p

ffiffiffiffiffiffiffiffiffi
k=m

p
. For the pipe without fluid

loading, the total mass in one cell including the pipe wall and fluid become smaller. The upper edge of the LR
gap is inversely related to the base structure mass [22]. As such, the upper edge of the LR gap in Fig. 8 is higher
than that in Fig. 7.

3.3. Bragg gap couple with LR

As we all know, Bragg gaps are dependent on the lattice constant and the LR gaps are dependent on the
resonant frequency of the LR oscillator. If we only change the lattice constant, the beginning frequency of the
Bragg gap will change, but the LR gap will not be influenced.

While vibration propagates through a pipe with LR structure, the attaching point will reflect the elastic
wave. This reflection satisfies the Bragg mechanism, so the Bragg gap can exist in the pipe with LR structure.
For a small lattice constant, the Bragg gap frequency is higher than that of LR and it separates from the LR
gap. Bragg gaps in PCs with LR structures were not studied. However, for the pipe system, the length is
enough for bigger lattice. We can change only the lattice constant to consider the effect of the reflection on the
LR gap. Other parameters are the same as those in Fig. 7. Fig. 9 illustrates the band structure calculated with
Eq. (13) for the pipe-conveying fluid with LR structures. The lattice constant is a ¼ 1m. We can find two gaps
in the range of 0–600Hz. The first one is the LR gap with a frequency range of 95–125Hz. The second of these
is the Bragg gap whose frequency range is 352–359Hz. In this case, the Bragg gap separates from the LR gap
and it will not affect the LR gap.

If the lattice constant is chosen as 3m, the Bragg gap frequency will become lower than the LR gap as
shown in Fig. 10. In this case, the first gap is a Bragg gap with frequency range of 36.5–39.5Hz and the second
gap is a LR gap with range of 95–103Hz.

For the bigger lattice constant, the base structure mass in one cell including the pipe wall and fluid become
larger. Thus, the upper edge of the LR gap in Fig. 10 is lower than that in Fig. 9.

At the resonant frequency of the oscillator, the harmonic forces from the oscillators to the pipe split the
original Bragg dispersion curves, and the LR gap is generated. For different lattice constants, the original
Bragg dispersion curves will change, so the aspect of the LR gaps in Figs. 9 and 10 are different.

Fig. 11 illustrates the band gap for a lattice constant of 1.9m. The band gap frequency range is from 77 to
122Hz. The resonant frequency exists in the gap. Compared to the data in Fig. 9, this gap range is wider.
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Fig. 9. Band structure of the pipe with fluid loading with infinite LR structures, the lattice constant a ¼ 1m.
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Fig. 10. Band structure of the pipe with fluid loading with infinite LR structures, the lattice constant a ¼ 3m.
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Fig. 11. Complex band structure of the pipe with fluid loading with infinite LR structures, the lattice constant a ¼ 1.9m.
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This is due to the LR gap connecting with the Bragg gap as illustrated in the Fig. 11(b). We find the band
corresponding to the resonant of oscillator in the gap is very flat. Therefore, the group velocity qo/qk is close
to zero. The vibration at this resonant frequency will be localized and the vibration propagation will be very
slow. This shows that the resonant effect corresponding to this flat band is very strong. For a bigger or smaller
lattice, the effect of the resonance will become weaker because the band is not so flat. This also shows that the
coupling between the Bragg scattering mechanism and the LR mechanism is benefited by widening the gap.
Also, the larger lattice constant is helpful in decreasing the additional mass for a pipe system.
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3.4. Periodic supports by LR

In the design of a piping system, the pipe supports have very important design features from the standpoint
of resisting system loads [15]. It has been shown that if the dominant frequency contents in the excitation loads
are known, a proper design of periodic supports for reducing the vibration in those frequency bands is
possible.

Here, we can get the periodic support properties through LR PCs theory. From Fig. 2, we can find the pipe
with LR structures can be transformed into the pipe with periodic support in the case of infinite oscillator
mass m. Since the beginning frequency of the LR gap can be estimated as 1=2p

ffiffiffiffiffiffiffiffiffi
k=m

p
, the gap for the periodic

support will start at 0Hz for an infinite mass m. In the calculation, we suppose the density of the copper
ring is rCu ¼ 8.95� 1010 kgm�3. The complex band structure for the pipe with periodic support is illustrated
in Fig. 12. The band gap frequency range is 0–49Hz. The calculation results are the same as those in Ref. [13]
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Fig. 12. Complex band structure of the pipe with fluid loading with infinite periodic support, the lattice constant a ¼ 0.75m.
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except for the different geometric and material parameters. From Fig. 12(b), one can find the typical
characteristic of the Fano-like interference phenomena has disappeared. The lattice constant will affect the
band gap frequency range illustrated in Fig. 13. The band gap frequency rings are 0–60 and 0–34Hz for lattice
constants a ¼ 0.5 and 1.5m, respectively.

4. Conclusions

In conclusion, the flexural vibration for a periodic pipe system with fluid loading is studied theoretically in
this paper. Using the TM theory, the gap properties with Bragg scattering and LR mechanisms are studied.

For the Bragg scattering mechanism, the effect of the fluid load makes the gap frequency lower. Also, we
find the gap frequencies are dependent on the internal fluid velocity. The gap frequencies become higher with
faster velocity v.

For the LR mechanism, one can obtain the low-frequency gap with a small lattice constant. The effect of the
fluid load will not change the beginning frequency of the LR gap.

By changing the lattice constant, the Bragg gap can couple with the LR gap. The benefit of the coupling
between the Bragg scattering mechanism and LR mechanism is to widen the gap.

Finally, the pipe with LR structures can be transformed into the pipe with periodic support by changing
some material parameters.

The existence of flexural vibration gaps in periodic pipe with fluid loading gives a new idea in vibration
control of pipe. The findings will be significant in the application of band gaps.
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